Un Devoir Maison vise à s'entrainer, sans la contrainte du temps limité. Il permet donc de travailler, en plus du contenu, la rédaction et la présentation...

Exercice 2 - De la physique sonore avec trois smartphones

L'application phyphox® dispose de modules acoustiques très utiles pour mener des expériences sur les ondes à l'aide d'un téléphone portable. Le module *Générateur de son* permet de produire une onde sonore sinusoïdale à une fréquence déterminée, tandis que le module *Intensité sonore* permet de déterminer l'intensité sonore d'un son. Il s'agit dans cet exercice d'étudier des phénomènes ondulatoires à l'aide de smartphones (appelés ici *mobiles multifonction*) munis de l'application phyphox ®.

Données :

- intensité sonore de référence (seuil d'audibilité) : I_0 = 1,0×10⁻¹² W·m⁻²
- célérité des ondes sonores dans l'air : c = 3,4×10² m·s⁻¹

Première expérience

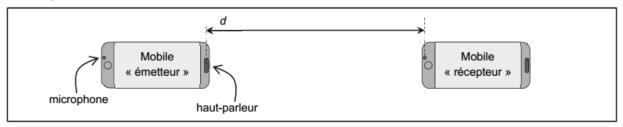


Figure 1. Mobiles multifonction émetteur et récepteur en vue de dessus.

Le mobile Générateur de son produit une onde sonore sinusoïdale de fréquence $f = 2,00 \times 10^3$ Hz.

1. L'intensité sonore mesurée par le mobile « récepteur » situé à une distance d = 30 cm de l'émetteur vaut $I_1 = 2.0 \times 10^{-7} \text{ W} \cdot \text{m}^{-2}$. Calculer la valeur du niveau d'intensité sonore L_1 correspondant.

Dans le modèle de l'atténuation géométrique et pour une source ponctuelle qu'on considère émettre dans tous les directions, l'intensité sonore I perçue à une distance d de la source est le rapport de la puissance P_0 de la source par la surface de la sphère de rayon d (surface dont l'expression est $4\pi d^2$).

2. À l'aide de ce modèle, on souhaite trouver la distance d' pour laquelle l'intensité sonore (notée I₂) vaut la moitié de l'intensité sonore I₁ à la distance d. En indiquant le raisonnement, indiquer parmi les expressions suivantes celle qui convient.

a.
$$d' = \frac{d}{\sqrt{2}}$$
 b. $d' = \sqrt{2} \times d$ **c.** $d' = 2 \times d$ **d.** $d' = \frac{d}{2}$ **e.** $d' = 4 \times d$ **f.** $d' = \frac{d}{4}$

- **3.** Lorsqu'on réalise l'expérience dans les conditions décrites à la question 2 (distance d' donnée par la relation choisie), on trouve une valeur de niveau d'intensité sonore L_2 = 48 dB. **Calculer** l'intensité sonore I_2 associée et **vérifier** qu'elle vaut moins que la moitié de I_1 = 2,0×10⁻⁷ W·m⁻².
- **4.** La mesure précédente de I_2 n'est donc pas en accord avec la valeur prévue par le modèle d'atténuation géométrique. **Proposer une explication** à cet écart entre les prévisions du modèle et les mesures.

Deuxième expérience

Deux mobiles multifonction sont disposés côte à côte (numérotés 1 et 2) comme l'indique la figure 2. Chacun d'eux dispose du module « Générateur de son » de phyphox®. Les modules sont activés afin de produire un son sinusoïdal de fréquence $f = 2,00 \times 10^3$ Hz. Le mobile multifonction 3 dispose quant à lui d'une application d'enregistrement sonore (figure 2).

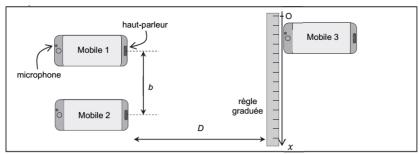
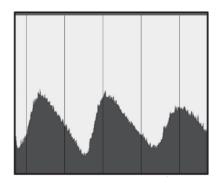



Figure 2. Disposition relative des trois mobiles multifonction. Les échelles sur le schéma ne sont pas respectées. On précise les valeurs de b et D: b = 1,0 m et D = 1,0 m.

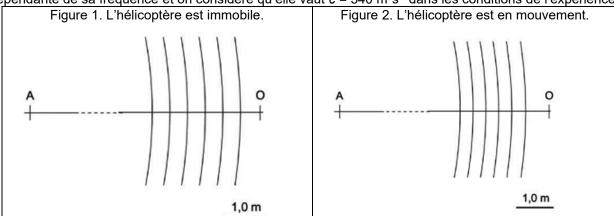
5. Montrer que la valeur de la longueur d'onde des ondes émises vaut $\lambda = 17$ cm.

L'expérimentateur déplace le mobile multifonction 3 le long de la règle graduée (suivant l'axe Ox) à une vitesse constante d'environ $v = 0,10 \text{ m} \cdot \text{s}^{-1}$, pendant que le son est enregistré. On constate que l'amplitude du son varie périodiquement comme l'indique la figure 3.

L'écart entre deux traits verticaux consécutifs correspond à une seconde.

Figure 3. Amplitude du son (après traitement) au cours du temps pour le déplacement du mobile multifonction 3.

- 6. Nommer le phénomène physique en jeu lorsque les mobiles multifonction 1 et 2 émettent simultanément des ondes sonores sinusoïdales de même fréquence.
- 7. En supposant que les deux mobiles émetteurs émettent deux sons en phase, indiquer une condition sur la différence de marche (qu'on définira) pour que le mobile 3 soit dans une zone correspondant à une amplitude faible.
- L'interfrange i est définie comme la distance entre deux minima consécutifs ou deux maxima consécutifs le long de l'axe Ox. Estimer la valeur de l'interfrange à partir de la figure 3.


La distance D entre l'émetteur et le récepteur ne pouvant pas être considérée très grande par rapport à la distance b entre les deux sources, l'expression de l'interfrange i est un peu compliquée que celle vue en classe dans le cas des ondes lumineuses : ici, $i = \frac{\lambda \times D}{b} \sqrt{\left(1 + \frac{b^2}{4D^2}\right)}$.

- Calculer la valeur de l'interfrange à l'aide de la relation donnée ci-dessus. Cette valeur est prise comme valeur de
- **10.** En considérant que l'incertitude-type sur la valeur mesurée à la question 8 vaut u(i) = 1 cm, **indiquer** grâce à un calcul si la valeur mesurée est compatible avec la valeur fournie par la relation ci-dessus. On rappelle que pour comparer une valeur mesurée notée x_{mes} à une valeur de référence notée $x_{réf}$, on peut calculer le rapport $\frac{|x_{mes}-x_{réf}|}{x_{mes}}$. Si sa valeur est inférieure à 2 on considère les deux valeurs compatibles.
- 11. On suppose qu'on positionne le récepteur sur la médiatrice des deux sources (le mobile est alors à égale distance des deux émetteurs).
 - a. Si on rapproche brusquement le mobile récepteur en le laissant sur cette médiatrice, justifier qu'il y ait encore des interférences et qu'elles restent constructives.
 - Décrire les évolutions de la fréquence et de la longueur d'onde du signal reçu lors de ce rapprochement.

Exercice 2 - Détermination de la vitesse d'un hélicoptère par effet Doppler

On s'intéresse à un son émis par un hélicoptère et perçu par un observateur immobile. La valeur de la fréquence de l'onde sonore émise par l'hélicoptère est $f = 8,1 \times 10^2$ Hz.

Les portions de cercles des figures 1 et 2 ci-dessous donnent les maxima d'amplitude de l'onde sonore à un instant donné. Le point A schématise l'hélicoptère. Dans le cas de la figure 1, l'hélicoptère est immobile. Dans le cas de la figure 2, il se déplace à vitesse constante le long de l'axe et vers l'observateur placé au point O. La célérité du son dans l'air est indépendante de sa fréquence et on considère qu'elle vaut $c = 340 \text{ m} \cdot \text{s}^{-1}$ dans les conditions de l'expérience.

- 1. Décrire la perception de l'observateur par rapport à la situation où l'hélicoptère serait immobile.
- **2.** On montre que la fréquence du son perçu par l'observateur, notée f_r , lorsque l'hélicoptère est en mouvement s'exprime

①
$$f_r = \frac{c}{c-v} \times f$$
 ② $f_r = \frac{c}{c+v} \times f$ où v est la vitesse de l'hélicoptère.

À l'aide d'un raisonnement qualitatif, choisir la relation adaptée à la situation.

- 3. Déterminer, avec un maximum de précision, la longueur la longueur d'onde λ' de l'onde perçue lorsque l'hélicoptère est en mouvement rectiligne uniforme.
- **4.** En déduire la valeur de f_r .
- 5. En déduire une estimation de la valeur de la vitesse de l'hélicoptère en km·h-1.