Le système international d'unités (SI)

L'usage partagé des unités vise à pouvoir communiquer entre nations, indépendamment de la zone géographique où l'on vit. C'est la raison pour laquelle a été établi un Système International d'unités. Le Bureau international des poids et mesures (BIPM) est la principale organisation internationale qui maintient et gère ce système.

7 grandeurs et unités de base

Sept unités suffisent à définir toutes les autres. On cherche le plus possible à se débarrasser d'étalons matériels pour définir les unités de base, en utilisant les constantes fondamentales de la physique. C'est l'objectif de la révision qui a eu lieu en 2018 (les définitions en gras n'ont pas été modifiées).

Grandeur	Unité	Symbole	Définition de l'unité
temps	seconde	s	La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133.
longueur	mètre	m	Le mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde
masse	kilogramme	kg	Le kilogramme est défini en fixant la valeur numérique de la constante de Planck à exactement $6,626\ 070\ 15\ \times 10^{-34}$ quand elle est exprimée en $s^{-1} \cdot m^2 \cdot kg$, ce qui correspond à des J·s.
intensité électrique	ampère	A	L'ampère est défini en prenant la valeur numérique fixée de la charge élémentaire, e, égale à 1,602 176 634 \times 10 ⁻¹⁹ lorsqu'elle est exprimée en C, unité égale à A·s, la seconde étant définie en fonction de ΔV_{Cs} .
température	kelvin	K	Le kelvin est définie en fixant la valeur numérique de la constante de Boltzmann à exactement 1,380 649 \times 10 ⁻²³ quand elle est exprimée en s-2 m ² kg K ⁻¹ , ce qui correspond à des J K ⁻¹ .
quantité de matière	mole	mol	La mole est la quantité de matière d'un système contenant exactement $6,02214076\times10^{23}$ entités élémentaires spécifiées. Une entité élémentaire peut être un atome, une molécule, un ion, un électron, ou toute autre particule ou groupement spécifié de particules. Sa valeur est donc définie en fixant la valeur numérique de la constante d'Avogadro à $6,02214076\times10^{23}\mathrm{lorsqu'elle}$ est exprimée en mol ⁻¹ .
intensité lumineuse	candela	cd	La candela est l'intensité lumineuse, dans une direction donnée, d'une source qui émet un rayonnement monochromatique de fréquence 540 x 10 ¹² hertz et dont l'intensité énergétique dans cette direction est 1/683 watt par stéradian.

En 2018, quatre unités (le kilogramme, l'ampère, le kelvin et la mole) ont changé de définition. Toutes les unités sont maintenant définies en s'appuyant sur des constantes de la nature; les nouvelles définitions ont été établies à partir des valeurs numériques fixées de la constante de Planck (h), de la charge élémentaire (e), de la constante de Boltzmann (k) et de la constante d'Avogadro (N_A) , respectivement.

Quelques unités dérivées courantes

Grandeur	Unité	Symbole	Expressions en fonction des unités de base	Autres unités courantes (non SI)	
angle	radian	rad	m/m		
fréquence	hertz	Hz	s ⁻¹		
température	Degré Celcius	°C			
force	newton	N			
énergie	joule	J			
puissance	watt	W			
tension	volt	V			
charge	coulomb	С			
résistance	ohm	Ω			
conductance	siemens	S			
champ magnétique	tesla	Т			
pression	pascal	Pa			

Multiples et sous-multiples

Puissance de 10	Symbole	Nom du préfixe	
10^{1}	da	déca	
10^{2}	h	hecto	
10^{3}	k	kilo	
10^{6}	M	méga	
109	G	giga	
10^{12}	T	téra	
10^{15}	P	péta	

Puissance de 10	Symbole	Nom du préfixe		
10-1	d	déci		
10-2	c	centi		
10-3	m	milli		
10-6	μ	micro		
10-9	n	nano		
10-12	p	pico		
10-15	f	femto		
10-18	a	atto		

Remarque: 1 angström = $1 \text{ Å} = 10^{-10} \text{ m}$.

Alphabet grec

Alphabet grec		Caractère romain équivalent	Alphabet grec			Caractère romain équivalent	
Majuscules	Minuscules	Nom		Majuscules	Minuscules	Nom	
Α	α	Alpha	а	N	ν	Nu	n
В	β	Bêta	b	Ξ	ξ	Xi, ksi	x, ks
Γ	γ	Gamma	g	0	0	Omicron	o (bref)
Δ	δ	Delta	d	П	π	Pi	р
Е	3	Epsilon	e (bref)	P	ρ	Rhô	r
Z	ζ	Dzéta	dz	Σ	σ, ς	Sigma	s
Н	η	Êta	ê (long)	Т	τ	Tau	t
Θ	θ	Thêta	th	Y	υ	Upsilon	u
I	ι	lota	i	Φ	φ	Phi	ph
K	ĸ	Карра	k	X	χ	Khi	kh
Λ	λ	Lamda	l	Ψ	Ψ	Psi	ps
M	μ	mu	m	Ω	ω	Oméga	o (long)