Correction des exercices

Exercice 33 page 179

État	Avancement	CH ₃ CO ₂ H (aq)	+ H ₂ O (ℓ)		+ H ₃ O+ (aq)
initial	0	c·V	excès	0	0
en cours	х	c · V - x	excès	Х	х
final	x _f	$c \cdot V - x_{f}$	excès	X _f	X _f

L'avancement maximal est : $x_{\text{max}} = c \cdot V \text{ donc } c = \frac{x_{\text{max}}}{V}$

Le taux d'avancement final est $\tau = \frac{x_f}{y}$ donc :

$$x_f = x_{\text{max}} \cdot \tau$$
.

La concentration effective de chacune des espèces dissoutes est :

$$\begin{split} \left[\mathsf{CH_3CO_2^-}\left(\mathsf{aq}\right)\right]_f &= \left[\mathsf{H_3O^+}(\mathsf{aq})\right]_f = \frac{x_f}{V} \\ &= \frac{x_{\max} \cdot \tau}{V} = c \cdot \tau \\ \left[\mathsf{CH_3CO_2H}\left(\mathsf{aq}\right)\right]_f &= \frac{c \cdot V - x_f}{V} = \frac{x_{\max} - x_{\max} \cdot \tau}{V} \\ &= \frac{x_{\max} \cdot (1 - \tau)}{V} = c \cdot (1 - \tau) \end{split}$$

b. La constante d'acidité K_A du couple s'écrit donc :

$$K_A = \frac{(c \cdot \tau)^2}{c \cdot (1 - \tau)}$$

On en déduit l'équation du second degré :

$$c\cdot \tau^2 + \mathsf{K}_\mathsf{A} \cdot \tau - \mathsf{K}_\mathsf{A} = 0.$$

2. a. On résout l'équation précédente.

$$\tau = \frac{-K_A + \sqrt{\Delta}}{2 \cdot c} = 0.014 \text{ soit 1,4 \%}.$$

On calcule ensuite les concentrations avec les rela-

tions de la question 1. a. :

$$\begin{bmatrix} CH_3CO_2^- (aq) \end{bmatrix} = \begin{bmatrix} H_3O^+ (aq) \end{bmatrix} = c \cdot \tau$$

$$= 8.0 \times 10^{-2} \times 0.014$$

$$= 1.1 \times 10^{-3} \text{ mol} \cdot L^{-1}$$

$$\begin{bmatrix} CH_3CO_2H (aq) \end{bmatrix} = c \cdot (1 - \tau)$$

$$\begin{bmatrix} \text{CH}_3\text{CO}_2\text{H (aq)} \end{bmatrix} = c \cdot (1 - \tau) \\ = 8.0 \times 10^{-2} \times (1 - 0.014) \\ = 7.9 \times 10^{-2} \text{ mol } \cdot \text{L}^{-1} \end{bmatrix}$$

b. pH = $-\log[H_3O^+(aq)] = -\log(1.1 \times 10^{-3}) = 3.0$

Le pH calculé correspond bien à la valeur mesurée.

Exercice 34 page 179

34 1. pH = pK_A + log
$$\left(\frac{[CH_3CO_2^- (aq)]_f}{[CH_3CO_2H (aq)]_f}\right)$$

pH = pK_A + log 1
pK_A = pH = 4,8

2. Une solution tampon est une solution dont le pH varie peu par addition d'une petite quantité d'acide ou de base, et par dilution modérée.

3.
$$M_{\text{soude}} = 23.0 + 16.0 + 1.0 = 40.0$$

 $n = \frac{m}{M} = \frac{0.40}{40.0} = 1.0 \times 10^{-2} \text{ mol};$

[HO⁻ (aq)] =
$$\frac{n}{V}$$
 = 1,0 × 10⁻² mol·L⁻¹, d'où:
[H₃O⁺ (aq)] = 1,0 × 10⁻¹² mol·L⁻¹;

$$pH = - log ([H_3O^+ (aq)]) = - log (1.0 \times 10^{-12}), donc pH = 12.0.$$

Tandis que le pH de la solution contenant le mélange d'acide éthanoïque et d'ion éthanoate varie peu, le pH de l'eau varie beaucoup (de 7,0 à 12,0) : l'eau pure n'est pas une solution tampon.